
Preface

General Relativity Lecture notes
Govind Menon

These are the lecture notes for Relativity I (PHY 4460/5560) and II (PHY
4478/5578) that are offered at Troy University. Chapters 1-5 are covered in
full detail during the first semester. The assigned problems are integral to the
lectures, and I would advise every student to work through them carefully.
Should you find any errors or even a lack of clarity of explanation, please
contact me via e-mail at gmenon(at)troy.edu.

There is hardly a need to say that the material presented is not original
in content. But it is simply a version of how I envision the first reading of
relativity should be. After going through my notes, you should be able to
understand more advanced texts in general relativity by authors like Poisson
and Straumann with relative ease.

A typical course sequence in relativity will not spend as much time as I
have spent on special relativity. It is my strong personal belief that this trend
is a shortcoming of how we teach general relativity. Inspired by the wonderful
book on Minkowski spacetime by Gregory Naber [1], I have picked the bare
essentials from Naber’s text and included them in the first three chapters
of the notes. Our notes start at the very beginning (it’s a very good place to
start), so, as such, there aren’t any formal prerequisites for this course outside
your freshman Calculus sequence. Indeed, sophomores have taken this course
sequence successfully.

I have explicitly shown all the fundamental constants, including c. If this
bothers you, please pretend you do not “see” it.
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Part I

Lecture Notes for Relativity I (PHY
4460/5560)
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The Lorentz Transformation

We will begin our study of (special) relativity by stating the postulates of the
theory on which the entire subject is built.

Postulate 1: The speed of light, c, in vacuum has the same value in every
inertial frame of reference.

Postulate 2: The laws of physics take the same form in all inertial frames of
reference.

It is important to realize that a physical theory is only as true as the
validity of its postulates. The remainder of the subject is a consequence of
logic and analysis. Although relativity is a very robust and mature theory,
continuous efforts are being made to test the limits of its postulates. Suffice
it to say that we will consider the postulates of relativity to hold for the
remainder of these notes.

Our job is to describe a set of preferred observers who carry a measuring
stick and clocks so that they may record the spatial distance to any point
of interest and also set up a clock at that location such that all clocks agree
with the clock carried by the observer for all time. Consider such a potential
“inertial observer” S. The coordinates used by the inertial observer S will be
referred to as an inertial frame or an inertial coordinate system. From
the first postulate of relativity, Newton’s first law of motion is satisfied in this
inertial frame, and so the observer S will see all potential free particles as
moving with a constant velocity. This means that the observer S must not be
accelerating. To locate the distance to any spatial point P from the spatial
origin O of the observer, she/he simply sends a beam of light from O to P and
have it reflect back to O and records the time taken as tOP . From the first
postulate of relativity, the unambiguous distance between O and P is simply
given by
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dOP = c
tOP

2
.

Also, if an event is recorded at the spatial location P, a signal is sent back to
O via a light signal. Let tP be the time when the signal was received at O by
S. Then S records the time of the event as

tP −
dOP
c

.

In this manner, in principle, S is able to assign a set of four numbers (t, x, y, z)
for all events. The point x = y = z = 0, locates the origin O mentioned above.
Since space and time will be on equal footing in the development of the theory,
we would instead have S use the coordinates (ct, x, y, z). This way, all of the
4-tuples have a dimension of distance.

We will soon have occasion to describe the complete catalog of all other
possible inertial observers, and the coordinate transformations between them.
But for now, we will focus on a very special type of observer. Let us suppose
that an observer S̄ is moving along the positive x-axis of S with a constant
speed v. Since in Newtonian mechanics such an observer would also be deemed
inertial (accelerations of objects as viewed by S and S̄ are the same, and hence
the expression for the net force is unchanged), we would want the speed of
light in S̄ to be exactly c. How can this be? For, after all, relative velocities
must simply add vectorially giving that the speed of light c̄ in S̄ is given by
c̄ = c− v, thus violating the second postulate of relativity!

The resolution to the above conundrum is given by the famous Lorentz
transformation that students first encounter in a Modern Physics course. Let
S̄ use coordinates (ct̄, x̄, ȳ, z̄). Notice that c is not “barred”. Then the time
and space coordinates of the two observers are related by the transformation

ct̄ = γ(ct− βx)
x̄ = γ(x− βct)

ȳ = y
z̄ = z

where β = v/c and γ =
1√

1− β2
. (1.1)

A few immediate remarks are in order. Note that the Lorentz transform is
not valid when β2 ≥ 1 (we certainly don’t want imaginary lengths and time).
Therefore, we only allow for S̄ to have a relative velocity below c. Further,
when β << 1, we see that the Lorentz transformation reduces to its Galilean
counterpart, i.e.,

t̄ = t
x̄ = x− vt
ȳ = y
z̄ = z

. (1.2)
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Comparing the above equations, we see that, unlike Newtonian physics, here
t̄ is not equal to t; and this is the source of many of the interesting physics in
special relativity.

Remark 1.1. Since the time coordinate undergoes a change under a Lorentz
transformation, we can no longer treat it as an absolute quantity. I.e., we
have to treat time and space on an equal footing. Thus, spacetime points are
described by the 4-tuple (ct, x, y, z). We chose ct instead of t since ct has the
dimension of length just like x, y, z.

Finally, it is important to note that there exists no meaningful derivation
of the Lorentz transformation in the present context; however, we include a
heuristic argument for the sake of completeness. It is only later, when we
confront the powerful theorem by Zeeman [2] that we can conclude that we
have the right result.

Observer S̄ using coordinates (t̄, x̄, ȳ, z̄) is moving with a speed v along the
x-axis of another inertial observer S using coordinates (t, x, y, z). We want a
transformation between the two coordinate systems such that both observers
measure the same speed of propagation for a beam of light. Since relative
motion is restricted to the x direction, we will set

ȳ = y, and z̄ = z .

As a first guess, we assume that

x̄ = γ(x− vt) . (1.3)

Here γ is set to be a constant depended on the parameters of the transfor-
mation, namely c and v, that is yet to be determined. The above expression
has the advantage that when γ → 1, we get the familiar Galilean coordinate
transformation of coordinates. The symmetry between the frames suggests
that when v → −v, the barred and unbarred coordinates interchange. This
assumption tacitly implies that γ is an even function of v. Then, eq.(1.3) also
implies that

x = γ(x̄+ vt̄) . (1.4)

Combining the above two equations yields

x̄ = γ(γx̄+ γvt̄) − γvt ,

or

t = γt̄ +
(γ2 − 1)

γv
x̄ .

Once again, swapping the barred and unbarred coordinates and substituting
v → −v, we get that
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t̄ = γt +
(1− γ2)

γv
x . (1.5)

Now, imposing the requirement that, for the location of the tip of a beam of
light

x = ct =⇒ x̄ = ct̄

in eq.(1.3) we get that
t̄ = γt(1− β) (1.6)

where,

β =
v

c
.

Unlike eqs.(1.3)-(1.5), eq.(1.6) is not generally valid. It is only true along the
tip of the beam. Nonetheless, it enables us to fix γ. Inserting eq.(1.6) into
eq.(1.5) yields,

γt − γβt = γt+
(1− γ2)

γv
ct ,

which gives the final needed expression for γ as

γ =
1√

1− β2
.

Note that β < 1 for real and finite transformations. Finally, inserting eq.(1.3)
into eq.(1.5) gives us that

t̄ = γ
(
t− v

c2
x
)
.

To recap, the Lorentz transformation describing a boost along the x direction
is given by

x̄ = γ(x− vt) , t̄ = γ
(
t− v

c2
x
)
,

ȳ = y , and z̄ = z ,

where

γ =
1√

1− β2
, and β =

v

c
.

Remark 1.2. It is only for convenience that we chose to derive the Lorentz
transformation along the x axis. It is just as easily done along any axis, and
we will have occasion to see this explicitly.
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Problem 1.1. Show that the inverse Lorentz transformation is given by

ct = γ(ct̄+ βx̄)
x = γ(x̄+ βct̄)

ȳ = y
z̄ = z

. (1.7)

Problem 1.2. Suppose a beam of light is sent from the spacetime point
(ct1, x1, y1, z1) to (ct2, x2, y2, z2) in S, then we must have that

c2(t2 − t1)2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 .

Show that in S̄ the two spacetime coordinate components must also satisfy

c2(t̄2 − t̄1)2 = (x̄2 − x̄1)2 + (ȳ2 − ȳ1)2 + (z̄2 − z̄1)2 .

Here, the barred coordinates are related to their unbarred coordinates by the
Lorentz transformation in eq.(1.1).

The above problem does indeed verify that the speed of light does not
change in a coordinate system that is moving with a constant velocity with
respect to another inertial frame. For simplicity, we chose the direction of the
moving frame to be in the x direction. Clearly, there is no need for such a
restriction. Such frames (/observers) are in general referred to as Lorentz
Boosted frames (/observers). One might even refer to the transformation in
eq.(1.1) as a Lorentz Boost. The number γ in eq.(1.1) is often referred to
as the Lorentz factor.

To understand the nature of space and time of a boosted observer, as
compared to another inertial observer, we begin our analysis be constructing
spacetime diagrams in the t, x plane. It is customary to graph x as the hor-
izontal axis and ct as the vertical axis (the fact that these axes are chosen
to be perpendicular has no physical significance; it is done only for ease). We
will place both S and S̄ coordinate grids in the same spacetime diagram to
fully appreciate the consequences of a Lorentz boost. To this end, note that
the t̄ axis of S̄ is the set of all points on which x̄ = 0, i.e., we set γ(x−vt) = 0.

Here, as usual γ = 1/
√

1− β2 and β = v/c. Therefore, the ct̄ axis is the line

ct =
1

β
x .

Similarly, the x̄ axis is obtained by setting ct̄ = 0 = γ(ct − βx) and is given
by the line

ct = βx ,
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x

c t

x

tc
beam of light

atc +== xctconstant, b

bxctx +==
b

1
constant,

Fig. 1.1. Slanted dashed lines are lines of constant ct̄ and x̄. Notice how the beam
of light has the same speed in both frames.

and the lines ct̄ = constant (horizontal lines in the S̄ frame) are given by

ct = βx+ a

in the frame S. Here, different constants a generate different lines of constant
ct̄. These lines are parallel to the x̄ axis.

The lines x̄ = const (vertical lines in the S̄ frame) are given by lines

ct =
1

β
x+ b

Here, different constants b generate different lines of constant x̄. These lines
are parallel to the ct̄ axis. The resulting diagram is represented in fig.(1.1).
The observer in S lives on the line x = 0, i.e, the ct axis, while the observer in
S̄ lives on the line x̄ = 0, i.e., the ct̄ axis. The fact that different observers live
on different curves in spacetime leads to the famous time dilation and length
contraction effects. Such special relativistic effects are meaningful only when
β is significant and γ is greater than 1. In practice, this happens when β ≥ .1
or equivalently when v ≥ .1c.

Time Dilation

Example 1.1. With respect to a stationary inertial observer on earth (we will
treat non-moving observers on earth as practically inertial), a rocket ship flies
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from a spacetime point p1 = (0, 0, 0, 0) on earth to the point p2 = (c T, d, 0, 0)
to a distant galaxy. What is the lapsed time for an inertial observer that is
fixed on the rocket ship? Provide the relevant spacetime diagram.

Solution: For ease of calculation, we will ignore the initial acceleration and
the final deceleration of the rocket ship, as the time taken for launch and
landing is minuscule compared to an intergalactic journey!

Let S and S̄ be the inertial frames used by the observer on Earth and the
rocket, respectively. As measured by S on Earth, the rocket ship starts at

t1 = 0 and x1 = 0 ,

and at its destination has coordinate values

t2 = T and x2 = d = vT ,

where v is the speed of the rocket ship. On the rocket ship however, S̄ locates
the starting point p̄1 as

t̄1 = 0 and x̄1 = 0 ,

and the time coordinate of the final destination as

t̄2 = γ
(
t2 −

v

c2
x2

)
= γ

(
t− v

c2
vT
)

=
√

1− β2 T .

Or

t̄2 =
T

γ
.

I.e., the observer on the rocket ship has aged less than the observer on Earth.
This is an example of the well known time dilation effect in special relativity.
As expected

x̄2 = γ(x2 − vt2) = γ(d− d) = 0 .

The relevant spacetime diagram for this example is given in fig.(1.2). ut

Definition 1.1. If a spacetime event occurs at the same spatial location 1 in
a particular inertial frame, then the time lapsed for the event in this frame
is called the proper time (denoted by τ) for this event. The frame itself is
referred to as rest frame for the event.

For the example considered above, the proper time lapsed for the trip τ = t̄.
In any other inertial frame, the duration for the event will be larger than τ
by a factor of γ, i.e.,

T = γ τ .

We will subsequently generalize the definition of proper time to include cir-
cumstances where there are no inertial rest frames during the entire span of
the event. This will be the case, for example, in the initial and final stages of
flight when the rocket ship is accelerating and or decelerating.
1 By the same spatial location we mean xi = constant for i = 1, 2, 3 in the particular

inertial frame.
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x

c t

0=x

tc

1
p

2
p

dx =

tctc =

v

d
cct =

Fig. 1.2. The solid represents the path taken by the rocket ship.

Length Contraction

Definition 1.2. The length of an object measured in a frame where the object
is at rest is referred to as its proper length.

Example 1.2. A (really fast) jet airplane of proper length L0 passes you by at
a speed of βc. According to you, what is the length of the airplane? How long
does it take for the airplane to pass you?

Solution On the airplane, in S̄, the front end traces out a curve in spacetime
denoted by (ct̄2, x̄2), and so does that back end as described by (ct̄1, x̄1).
Note that we suppress the y and z coordinates for obvious reasons. Clearly,
S̄ measures the proper length to be

∆x̄ = x̄2 − x̄1 = L0 .

When we transform the end point spacetime locations to your frame of refer-
ence S, the expressions become

∆x = γ(∆x̄+ v∆t̄) (1.8)

and
c∆t = γ(c∆t̄+ β∆x̄) . (1.9)

Note that ∆ is the change in coordinate values from the front and the back
end of the airplane. Also, we have used the inverse Lorentz transform (as we
must). When you measure the length of the airplane in S, you locate the end
points at the same instant of time in your frame (that’s the simplest way to
measure the length of a moving object). I.e., c∆t = 0 or from eq.(1.8)

c∆t̄ = −β∆x̄ .
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x

ct tc

x

0
L

L

front of airplane

back  of airplane

Fig. 1.3. The solid lines show the proper length L0, and L is the length as measured
in the frame S.

Then, from eq.(1.9), the length L that you measure is given by

L = ∆x = γ(∆x̄+ v∆t̄) = γ

(
∆x̄− v2

c2
∆x̄

)
=
∆x̄

γ
,

or

L =
L0

γ
.

I.e., the length of the airplane appears contracted to you. The time taken for
the airplane to pass you is given by

∆t =
distance

v
=
L0

√
1− β2

v
.

Fig.(1.3) shows the relevant spacetime diagram. ut

The following example is from [3].

Example 1.3. A train of rest length 200m travels along a straight line of track
past a train station of rest length 100m with β =

√
3/2. What does the

engineer on the train measure the length of the train station to be? What
does the station master measure the length of the train to be?

Solution Here γ = 2.

According to the station master:
Length of the station = 100m
Length of the train = 200/2 = 100m

According to the engineer on the train:
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Back of Train

Front of Train

ct

Train station according to station master

x

Train according to station master

Train according to engineer

station according to the engineer

Fig. 1.4. The station is shown in blue, and the train is shown in green.

Length of the train = 200m
Length of the station = 100/2 = 50m

The relevant spacetime diagram is shown in fig.(1.4). Here we see that two
views can co-exist harmoniously. ut
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This portion of the homework is from a standard course in military science
that every school child has to take in the Post Imperial Era 2

Problem 1.3. You have been posted in the outer rim territory to monitor
rebel activity in the sector. Near the end of a quiet shift, the Tantive IV streaks
past, possibly carrying the stolen plans to the Death Star! The Imperial fleet
must determine the accurate speed of the craft to track the Tantive IV. Your
scans indicate that the spacecraft has a length of 135 m. Imperial records
show the craft is 150 m long. In transmitting your report to the headquarters,
what speed should you give for the spacecraft?

Problem 1.4. Anakin Skywalker dueled Count Dooku on board the Invisible
Hand. During the duel, the Invisible Hand zoomed past the Integrity at a
speed of .9c. Lieutenant Commander Needa looked through the window and
witnessed part of the duel. If Anakin was holding his meter-long lightsaber at
an angle of 30 degrees, how long does the saber appear to Needa? According
to Needa, what angle does the lightsaber subtend (to the common horizontal
in the direction of relative motion)?

Problem 1.5. Following the Rebel Alliance’s smashing victory at the Battle
of Yavin, Luke Skywalker (he was 19 years old at the time) flew his X-wing
fighter to Hoth to scout its suitability for housing the new rebel base. Un-
fortunately, 4 light years into the trip (as measured by the rebel base) Luke
discovered an Imperial blockade and that forced him to return immediately
to Yavin, the round trip taking 6 years according to Luke, (a) how fast did
he travel? (b) How old was Princess Leia, who was located at the base, when
Luke returned?

Hint: Write 1 light year as c times 1 year. I.e., 8 lyrs = 8 c years.

Problem 1.6. Bonus 3 pts: Jacen Solo, the oldest son of Han and Leia, boards
a spaceship and travel away from Coruscant toward Leritor, a mid rim world
near the Bothan sector at a constant velocity of 0.85c. One year later on
Coruscant clocks, Jacen’s twin sister, Jaina, boards a second spaceship and
follows Jacen at a constant velocity of 0.95c in the same direction. (a) When
Jaina catches up with Jacen, what will be the differences in their (proper)
ages? (b) Which twin will be older?

2 Problems in special relativity were transformed into the world of “Star Wars”
by Michael Cervera (Adjunct Lecturer, Department of History, Troy University).
This storyline follows the expanded Star Wars universe and not the third theatri-
cal trilogy.
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Inertial Observers

In this chapter, we will classify the list of all possible inertial observers. This is
important so that we can recognize a viable physical theory from an unphysical
one. After all, according to the second postulate of relativity, any physical
theory must have the same appearance in all inertial frames. So, we could
select a candidate transformation for each member of an inertial class and
subject the test theory to its transformation properties. If the new theory
survives this test, then at the very least we have a plausible theory. In the
next chapter, we will subject mechanics and electrodynamics to this test, and
you will get a concrete sense of what “same appearance in all inertial frames”
might mean. In practice, what we do is modify a theory if necessary so that
the postulates do indeed hold.

It might seem odd that physicists consider the above-mentioned test as an
important one. But, soon you will see that this has far-reaching consequences.
In fact, just this test in special relativity determines all the possible types of
particles that might exist in the universe 1. It also determines the types of
mathematical expressions that are allowed in a field theory. In this chapter,
however, we will not consider the second postulate of relativity. Our sole
attention will focus on the constancy of the speed of light. Turns out, this will
modify most all previously existing equations of physics. Any correct physical
theory must be recast in its relativistic form. We will take this issue up in the
following chapter.

Before we enter into our classification scheme, it will be useful to have an
understanding of the basic properties of the rotation group. After all, observers
who are rotated with respect to an inertial observer must also be inertial (they
would clearly measure the speed of light to be c).

1 This is beyond the scope of our purpose here. Most textbooks on Quantum Field
Theory will explain the classification of particle types. For example, see [4].
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2.1 The Rotation Group

Consider the simple case of rotation of an orthonormal bases frame about the
z-axis. Here ēx

ēy
ēz

 =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

ex
ey
ez

 . (2.1)

The rotation matrix about the z-axis about an angle ϕ denoted by Rz(ϕ) is
then given by

Rz(ϕ) =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 .

It is easy to verify some of the immediate properties of Rz(ϕ):

[Rz(ϕ)]−1 = Rz(−ϕ) ,

detRz(ϕ) = 1 ,

and
[Rz(ϕ)]T ·Rz(ϕ) = I ,

where I is the identity matrix. Now, let v be any 3-dimensional vector given
by

v = vx ex + vy ey + vz ez .

The same physical vector in the rotated frame can be written as

v = v̄x ēx + v̄y ēy + v̄z ēz .

Notice what we are doing is a passive rotation. The physical vector remains
unchanged while the components and the bases change simultaneously. I.e.,

v̄ = v .

Under a rotation about the z-axis, we already know how the bases vectors in
the two frames are related to each other (eq.(2.1)). It will be useful to work
out the transformation between the components of the vector v in the two
frames as well. To this end note that

v = v̄x ēx + v̄y ēy + v̄z ēz

= v̄x (cosϕ ex + sinϕ ey) + v̄y (− sinϕ ex + cosϕ ey) + z̄ ez

= (cosϕ v̄x − sinϕ v̄y) ex + (sinϕ v̄x + cosϕ v̄y) ey + z̄ ez .

I.e., vxvy
vz

 =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

v̄xv̄y
v̄z

 .
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Noting that the inverse of the above matrix is its transpose we get thatv̄xv̄y
v̄z

 =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

vxvy
vz

 .

Curiously, here, under rotation the components of a vector change exactly the
same way as the bases vector (eq.(2.1))! It is important to note that this is
not true under any other types of bases transformation save rotation. We will
see the reason for this shortly (problem 2.2).

Theorem 2.1. Given any vector v in a particular frame, the bases can be
rotated so that the new basis, v has only components in x-direction.

Proof. The argument is very simple and hardly unique. Let θ0 and ϕ0 be the
polar and azimuthal angle coordinates of the vector v 2. Then, first rotate the
bases about the z-axis through ϕ0 and then rotate about the new y-axis by
an angle of π/2− θ when θ < π/2 and by −(θ − π/2) otherwise. ut

Example 2.1. Consider a vector v with magnitude 2, ϕ = 900 and θ = 300.
Find a bases where v only has an x component.

Solution: Note v = ey +
√

3 ez. As per the proof above we first rotate about
z-axis through 900. The rotation matrix in this case is

Rz(π/2) =

 0 1 0
−1 0 0
0 0 1

 .

Consequently the new basis is given by

ēx = ey , ēy = −ex and ēz = ez .

In this basis, v = ēx +
√

3 ez. Now rotate about ēy through 600. I.e.,ẽx
ẽy
ẽz

 =

 1
2 0

√
3
2

0 1 0

−
√
3
2 0 1

2


ēx

ēy
ēz

 .

2 Our choice of spherical coordinates are such that

x = r cosϕ sin θ ,

y = r sinϕ sin θ

and
z = r cos θ .

Here θ and ϕ are the polar and azimuthal angles respectively.
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Then ṽxṽy
ṽz

 =

 1
2 0

√
3
2

0 1 0
−
√
3

2 0 1
2


 1

0√
3

 ,

and
v = 2 ẽx

where ẽx
ẽy
ẽz

 =

 1
2 0

√
3
2

0 1 0

−
√
3
2 0 1

2


 0 1 0
−1 0 0
0 0 1

ex
ey
ez

 .

�

Problem 2.1. Let

R =

 1
2 0

√
3
2

0 1 0

−
√
3
2 0 1

2


 0 1 0
−1 0 0
0 0 1

 .

Show that
detR = 1 , and RTR = I .

So far we considered simple cases of very specific rotations. However, to un-
derstand rotations as abstract objects let us consider its defining properties.

Definition 2.1. A transformation of vectors is a rotation R if and only if

1. R is linear. Clearly we would want that for any pair of vectors v and w,
R(v + w) = R(v) +R(w), and R(av) = a R(v)) for any real number a.

2. R should preserve lengths of vectors.
3. R should preserve the angle between any pair of vectors.
4. R should preserve the relative orientation of vectors; in particular for a

orthonormal bases set, since

ex × ey = ez ,

we must have that
ēx × ēy = ēz .

Here ēx = R(ex), and similarly for the other bases vectors.
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As a reminder, what we are doing here is a passive rotation as described
previously. Property 1 implies that R can be written as a matrix. Since we can
reconstruct how every vector transforms once we know how the bases vectors
transform, we will specify R by its defining equations on an orthonormal bases:ēx

ēy
ēz

 =

R11 R12 R13

R21 R22 R23

R31 R32 R33

ex
ey
ez

 . (2.2)

Theorem 2.2. If R is a rotation, then RTR = I, where I is the identity
matrix.

Proof. Under rotation, the familiar dot product of vectors are unchanged
(properties 2 and 3 above). I.e., for any pairs of vectors v and w

v ·w =

3∑
i=1

vi wi =

3∑
i=1

v̄i w̄i ,

where

v̄i =

3∑
j=1

Rij v
j 3

for a rotation matrix Rij . The vector w transforms in a similar manner. Then

v ·w =

3∑
i=1

v̄i w̄i =

3∑
ijk=1

Rij v
j Rik w

k =

3∑
jk

(RTR)jk v
j wk =

3∑
i=1

vi wi .

This can happen for every pair of vectors x and y if and only if

(RTR)kj = I .

ut

Problem 2.2. Suppose under a rotation, the components of any vector v
change according to the transformation

v̄i =

3∑
j=1

Rij v
j ,

then show that the bases vectors change exactly the same way, i.e.,

ēi =

3∑
j=1

Rij ej .

3 Here we have assumed that the bases vectors (ex, ey, ez) and transform exactly
as the components of a vector (v1, v2, v3). The next problem shows that this is
indeed the case.
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Theorem 2.3. If R is a rotation, then detR = 1.

Proof. From property 4 of rotations and eq.(2.2),

1 = (ēx × ēy) · ēz = detR .

This immediately gives that detR = 1. ut

Theorem 2.4. R is a rotation 4, if and only if

detR = 1 and RTR = I .

Proof. The above two theorems satisfies all the requirements of rotation in
definition 2.1. ut

Problem 2.3. Show that the set of all rotations form a group. I.e., show that

• R = I, the identity matrix, is a rotation.
• if R1 and R2 are rotations, then R1R2 is a rotation.
• if R is a rotation, then R−1 is a rotation.

Hint: Recall that for matrices A and B,

det(AB) = (detA)(detB) ,

and
(AB)T = BTAT .

Definition 2.2. From the theorem above, the set of all matrices R such that
detR = 1, and RTR = 1 forms an algebraic group 5 under matrix multiplica-
tion called the rotation group, and is denoted as SO(3).

The letters S stand for special, meaning determinant 1, or orientation pre-
serving, and the letter O stands for orthogonal, meaning RTR = 1 since they
carry orthonormal bases to another set of orthonormal bases.

4 As defined in eq.(2.2).
5 If you are not familiar with Group Theory in Algebra, here we simply mean that

conditions of problem 2.3 hold true.
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2.2 Classes of Inertial Observers

There are four very distinct types of coordinate transformations that re-
late one inertial observer to another. For definiteness, consider one inertial
frame/observer S that uses coordinates (ct, x, y, z). While the 3-tuple (x, y, z)
are the Cartesian coordinates of a particle, we will never treat it as a vec-
tor (you will see soon that in differential geometry this is typical). However,
when we have a Cartesian coordinate system (and only then), the difference
in location between two spatial points (x2, y2, z2) and (x1, y1, z1) denoted by

∆x = (x2 − x1, y2 − y1, z2 − z1)

is considered to be a vector located at the point (x1, y1, z1).

Time Translated Observer

Define a new set of coordinates, presumably carried by another observer, given
by

t̄ = t+ t0 , and (x̄, ȳ, z̄) = (x, y, z)

for some constant t0. Here, the two observers have not initially synchronised
their otherwise identical clocks. Then the speed of a beam of light in S∣∣∣∣∆x

∆t

∣∣∣∣ = c

in turn implies that ∣∣∣∣∆x̄

∆t̄

∣∣∣∣ = c .

Clearly this is so because ∆x̄ = ∆x and ∆t̄ = ∆t. Here | · | calculates the
usual magnitude of a vector x.

Space Translated Observer

Now consider a new class of observers defined by

t̄ = t , and (x̄, ȳ, z̄) = (x+ ax, y + ay, z + az)

Here ax, ay and az are 3 fixed real numbers. Here too, for the exact same
reason as above, ∣∣∣∣∆x

∆t

∣∣∣∣ = c

implies that ∣∣∣∣∆x̄

∆t̄

∣∣∣∣ = c .
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Rotated observer

Now consider a class of observers defined by

t̄ = t , and x̄i =

3∑
i=1

Rij x
j

for some rotation matrix R. Since the entries of the matrix R are constant

dx̄i

dt
=

d

dt

3∑
i=1

Rij x
j =

3∑
i=1

Rij
dxj

dt
.

From properties 2 and 3 of definition 2.1, magnitudes of vectors do not change
under rotation and so ∣∣∣∣dxdt

∣∣∣∣ = c→
∣∣∣∣dx̄dt

∣∣∣∣ = c .

Therefore, a rotated observer measures the speed of light to be c just as S.

Lorentz Transformed Observer

It is important to mention the very significant new class of observers that are
related by a Lorentz transformation here (eq. (1.1)). In the previous chapter,
we have ensured that the speed of light is indeed preserved under Lorentz
transformation. Naturally we mean to include boosts in all directions.

2.3 Minkowski Spacetime

The coordinates (ct, x, y, z) constructed by clocks and light beams as described
in the beginning of chapter 1, wherein along a light beam the change in coor-
dinates is such that

c2(∆t)2 = (∆x)2 + (∆y)2 + (∆z)2

is referred to as Minkowski coordinates. These coordinates are most “natu-
ral” to special relativity. Minkowski coordinates are usually labelled by Greek
indices as {xµ}, where µ = 0, 1, 2, 3 and x0 = ct, x1 = x, x2 = y and x3 = z.
Purely spatial object are indicated by Latin indices {xi}, where i = 1, 2, 3 and
x1 = x, x2 = y and x3 = z.

In the previous section we have constructed four distinct classes of inertial
observers. For compactness in notation, we can combine all of transformations
in these inertial into a single equation, which we write as

x̄µ = Λµ ν x
ν + aµ , (2.3)
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where aµ is a constant 4-tuple that could include a time and space translation,
and the matrix Λµ ν includes both rotations and Lorentz transformations
about arbitrary directions. 6 While the 4-tuples themselves are not vectors,
the difference in coordinates of two points, xµ2 and xµ1 , defined by

∆xµ = xµ2 − x
µ
1

is to treated as a vector located at the point xµ1 . Then under a transformation
given in eq.(2.3),

∆x̄µ = Λµ ν ∆x
ν . (2.4)

In fact, the above equation defines what we mean by a vector; namely, any
object that transform according to eq.( 2.4) under a coordinate transforma-
tion in eq.( 2.3) is called a 4-vector. Therefore, under inertial transformations,
4-vectors are only affected by boosts and rotations. Although ∆xµ is not in-
variant under Λµ ν , it turns out that a “special” combination of components
of ∆xµ are invariant under eq.(2.3).

Theorem 2.5. Under eq.( 2.3), the quantity

6 Always, the first index of a matrix, (µ in this case) denotes the row, and the
second index (ν in this case) denotes the column of the matrix. Explicitly

Λµ ν =


Λ0

0 Λ
0

1 · ·
Λ1

0 Λ
1

1 · ·
· · · ·
· · · Λ3

3

 .

Additionally, we are using the Einstein summation convention, namely repeated
upper and lower indices are being summed over. Explicitly

Λµ ν x
ν = Λµ 0 x

0 + Λµ 1 x
1 + Λµ 2 x

2 + Λµ 3 x
3

for each value of µ. The Einstein summation convention is to be understood
throughout the remainder of the text. Any exceptions will be stated as such.
When Λµ ν is a rotation, it will take the form

1 0 0 0
0
0 Rij
0

 ,

where R is a 3 × 3 rotation matrix, and for example, when Λµ ν is a boost along
the x-direction, it will take the form

Λµ ν =


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1

 .
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−(∆ct)
2

+ (∆x)
2

+ (∆y)
2

+ (∆z)
2

is an invariant for rotations, time and space translations, and boosts along x
axis. Here (∆ct,∆x,∆y,∆z) are the components of a 4-vector.

Proof. Under space-time translations, the result is trivially true, since the
components of a 4-vector remains unaffected. Under rotations

(∆x)
2

+ (∆y)
2

+ (∆z)
2

= (∆x̄)
2

+ (∆ȳ)
2

+ (∆z̄)
2

and
∆ct̄ = ∆ct .

Therefore, the above combination is again trivially true. Under a Lorentz
transformation in the x-direction

−(∆ct̄)
2

+ (∆x̄)
2

+ (∆ȳ)
2

+ (∆z̄)
2

= −γ2[∆ct− β∆x]2 + γ2[∆x− β∆ct]2 + (∆y)2 + (∆z)2

= γ2[(∆x)2(1− β2)− (∆ct)2(1− β2)] + (∆y)2 + (∆z)2

= −(∆ct)2 + (∆x)2 + (∆y)2 + (∆z)2 .

In a similar manner, it can be shown that

−(∆ct)
2

+ (∆x)
2

+ (∆y)
2

+ (∆z)
2

is invariant under arbitrary Lorentz transformations. ut

Clearly, the notation ∆xµ is cumbersome. Moreover, as we shall see, there are
4-vectors other than coordinate differences. Therefore, we denote an arbitrary
vector located at the point x in spacetime by Ax, Bx, Xx, Yx etc. A 4-vector
Xx at the point x is taken to mean

Xx ≡ (X0, X1, X2, X3) ≡ Xµ
x .

Here Xx is the abstract notation for a vector, while in the index notation we
write the same 4-vector as Xµ

x . Also, Since spacetime is the basic object in
special relativity, we will henceforth call 4-vectors simply as vectors. If we are
referring to the spatial components of a 4-vector in a particular frame, we will
point it out by calling the object a 3-vector.

Remark 2.1. Tentatively, the set of points described by Minkowski coordinates
(ct, x, y, z) ∈ R4 will be referred to as Minkowski spacetime. A precise defini-
tion with additional properties will follow shortly.
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Problem 2.4. Consider any two vectors Xµ
x and Y µx at the same spacetime

point x. Show that the quantity

−X0Y 0 +X1Y 1 +X2Y 2 +X3Y 3

is an invariant under eq.(2.3), for rotations, time and space translations, and
boosts along x axis.

We can use the invariant quantity to endow spacetime with an inner product
η (in R3 we often call this the dot product). The problem above motivates
the following definition.

Definition 2.3. For any pair of vectors Aµx and Bµx at the spacetime point x,
in Minkowski coordinates, define an inner product η by

η(Ax, Bx) ≡ −A0B0 +A1B1 +A2B2 +A3B3 . (2.5)

Notice that the inner product takes two vectors at the same spacetime point
x to a real number. With a slight abuse of notation, it is also usual to write
η(Ax, Bx) as Ax · Bx, and A2

x is taken to mean Ax · Ax. Define a matrix ηµν
by

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Then, using the Einstein summation convention we write

η(Ax, Bx) = ηµνA
µ
xB

ν
x .

For any pair of vectors, the above quantity does not depend on the inertial
frame. Note that η−1 = η, however we will denote η−1 as

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

so that
ηµαηαν = δµ ν ,

where the Kronecker delta, δµ ν , is the identity matrix.
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2.4 The Lorentz Group

We have shown that spacetime translations, rotations, and boosts preserve the
inner product η. It is only natural to ask if we are missing any other linear
transformations that will preserve η. To this end, consider any tentative linear
transformations Λµ ν . Then for any pair of vectors A and B, let Ā, and B̄ be
defined by

Āµ = Λµ νA
ν ,

and similarly for B̄.

Theorem 2.6. Let Λ be any linear transformation on vectors in Minkowski
spacetime. Then Λ preserves the inner product η, i.e.,

η(A,B) = η(Ā, B̄)

if and only if
η = ΛT η Λ .

Here Ā and B̄ is as defined above.

Proof.
ηαβ A

αBβ = ηµν Ā
µB̄ν = ηµν Λ

µ
αΛ

ν
β A

αBβ .

Therefore
Aα

[
ηµν Λ

µ
αΛ

ν
β − ηαβ

]
Bβ = 0

for all Aα and Bβ . This can happen only when

ηαβ = ηµν Λ
µ
αΛ

ν
β . (2.6)

In matrix notation, the above equation reads

η = ΛT η Λ . 7

ut

Definition 2.4. Any matrix that satisfies

η = ΛT η Λ (2.7)

is called a general homogeneous Lorentz transformation. The set of all general
homogeneous Lorentz transformations is denoted by L.

7

ηµν Λ
µ
αΛ

ν
β = Λµ α ηµν Λ

ν
β =

∑
µ

(
ΛT
)α

µ ηµν Λ
ν
β .

The right hand side of the equation above is simply matrix multiplication.
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Problem 2.5. Show that the boost in the x-direction given by eq.(1.1) is a
general homogeneous Lorentz transformation.

Problem 2.6. Show that the matrix

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.8)

is a general homogeneous Lorentz transformation. T is the time-reversal trans-
formation, and has the same entries as η, and T2 = I

Problem 2.7. Show that the matrix

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.9)

is a general homogeneous Lorentz transformation. P is called the parity trans-
formation. P transforms a right-handed coordinate system into a left-handed
one. Also, P2 = I.

All general homogeneous Lorentz transformations will preserve the inner prod-
uct η between any pair of vectors. Taking the determinant of the above equa-
tion, we also find that

detΛ = ±1 .

Therefore, general homogeneous Lorentz transformations can be inverted as
a matrix. Eq.(2.7) when multiplied by Λ−1 on both sides give

Λ−1 = η ΛT η . (2.10)

Theorem 2.7. Define
Λν

µ ≡ ηνβ ηµα Λβ α . (2.11)

Then
(Λ−1)µ ν = Λν

µ .

Proof.

(Λ−1)µ ν = (η ΛT η)µ ν =
∑
αβ

ηµα (ΛT )α β ηβν

= ηµα Λβ α ηβν = ηνβ η
µα Λβ α .

ut
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Theorem 2.8. Eq.( 2.7) implies that

ηµν = Λµ αΛ
ν
β η

αβ . (2.12)

Proof.
Λam Λ m

b = δab .

I.e.,
Λam ηµb η

νm Λµν = δab .

Or,
ηµb (Λam ηνm Λµν) = δab .

Since ηµb has a unique inverse, we have the necessary result. ut

Problem 2.8. Show that L is a group. Hint: use eqs. (2.7) and (2.10).

Theorem 2.9. If Λ ∈ L, then

(Λ0
0)2 = 1 +

3∑
k=1

(Λk0)2 = 1 +

3∑
k=1

(Λ0
k)2 . (2.13)

Proof. By setting α, β = 0 in eq.(2.6) we find that

η00 = −1 = −(Λ0
0)2 +

3∑
k=1

(Λk0)2 .

Similarly, eq.(2.12) implies that

η00 = −1 = −(Λ0
0)2 +

3∑
k=1

(Λ0
k)2 .

ut

From eq.(2.13) we get that

Λ0
0 ≥ 1 , or Λ0

0 ≤ −1 .

Problem 2.9. Show that Λ ∈ L is a rotation if and only if Λ0
0 = 1.

Definition 2.5. If Λ ∈ L and Λ0
0 ≥ 1, we say that Λ is orthochronous, if

Λ0
0 ≤ −1 it is non-orthochronous.
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Theorem 2.10. The set of all orthochronous elements of L forms a subgroup
of L.

Proof. Let Λ and Λ̄ be two orthochronous elements of L, then

(ΛΛ̄)0 0 = Λ0
0 Λ̄

0
0 +

∑
i

(Λ0
iΛ̄
i
0) .

From eq.(2.13), and the Schwartz inequality of 3-vectors, the above expression
becomes

= +

√
1 +

∑
i

(Λ0
k)2
√

1 +
∑
i

(Λ̄k0)2 +
∑
i

(Λ0
iΛ̄
i
0)

≥
√

1 +
∑
i

(Λ0
k)2
√

1 +
∑
i

(Λ̄k0)2 −
√∑

i

(Λ0
k)2
√∑

i

(Λ̄k0)2 ≥ 0 .

I.e., Λ Λ̄ is orthochronous.

Also,
Λ 0
0 = η0a η

0b Λab = (−1)(−1)Λ0
0 > 0 .

I.e., the inverse of an orthochronous matrix is orthochronous. ut

Our inertial transformations thus far, described in eq.(2.3), all have the prop-
erty that detΛ = +1. But, there is no reason for us to ignore the case that
includes a reflection of the spatial axis. Naturally, we excluded this case while
classifying rotations, because they are not a rotation. However, an inertial
observer could easily carry a spatial grid where ex × ey is what he/she calls
the −ez direction. This reassignment will not affect the speed of light.

Definition 2.6.

L+ =
{
Λ| η = ΛT η Λ, and detΛ = +1

}
,

L− =
{
Λ| η = ΛT η Λ, and detΛ = −1

}
,

L↑+ =
{
Λ|Λ ∈ L+, Λ

0
0 ≥ 1

}
,

and
L↓+ =

{
Λ|Λ ∈ L+, Λ

0
0 ≤ 1

}
.

Problem 2.10. Verify that L↑+ forms a subgroup of L.
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Definition 2.7. The proper 8 orthochronous homogeneous Lorentz group, de-
noted by L↑+, is the set of all orthochronous homogeneous Lorentz transforma-

tions with determinant 1. L↑+ is often called the Lorentz group for short.

Problem 2.11. For any general homogeneous Lorentz transformation Λµ ν ,

T = (Λ0
0, Λ

1
0, Λ

2
0, Λ

3
0) ,

X = (Λ0
1, Λ

1
1, Λ

2
1, Λ

3
1) ,

Y = (Λ0
2, Λ

1
2, Λ

2
2, Λ

3
2) ,

and
Z = (Λ0

3, Λ
1
3, Λ

2
3, Λ

3
3) .

Show that

η(T, T ) = −1 , η(X,X) = η(Y, Y ) = η(Z,Z) = 1 ,

and

η(T,X) = η(T, Y ) = η(T,Z) = η(X,Y ) = η(X,Z) = η(Y, Z) = 0 .

Problem 2.12. Show that if a linear transformation of type

Λ =


a b 0 0
c d 0 0
0 0 1 0
0 0 0 1


belongs to L↑+, then Λ is a boost in the + or − x-direction.

Theorem 2.11. Let Λ be an arbitrary member of L↑+. Then there exists two
rotations R1 and R2 such that

Λ = R1 ΛB(β0) R2 .

Here, ΛB(β0) is a Lorentz boost in the x-direction with parameter β0.

8 The term proper refers to the determinant of the transformation being +1.
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Proof. If
Λ1

0 = Λ2
0 = Λ3

0 = 0 ,

then the theorem is trivially true. Suppose this is not the case. Set

u1 =
(Λ1

0, Λ
2
0, Λ

3
0)√

(Λ1
0)2 + (Λ2

0)2 + (Λ3
0)2
≡ (α1, α2, α3) .

Let
u2 = (β1, β2, β3)

and
u3 = (γ1, γ2, γ3)

be unit vectors such that {u1, u2, u3} is an orthonormal basis in R3. Note
that u2i = 1 for each i and ui · uj = 0 for i 6= j. Therefore

(R1)−1 =

α1 α2 α3

β1 β2 β3
γ1 γ2 γ3


is an orthogonal matrix 9. And by swapping the last pair of rows if necessary,
we can ensure that the above matrix has a unit determinant. Therefore, we
get the following rotation in M4:

(R1)−1 =


1 0 0 0
0 α1 α2 α3

0 β1 β2 β3
0 γ1 γ2 γ3

 .

Then (R1)−1 Λ ∈ L↑+, and is of the form (as is explained below)

(R1)−1 Λ =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

a10 a11 a12 a13
(a20 = 0) a21 a22 a23
(a30 = 0) a31 a32 a33

 .

Here {aij} are real numbers one gets from the above matrix multiplication.
Because of the explicit form of (R1)−1, the top row is not affected. Here,

a10 = α1 Λ
1
0 + α2 Λ

2
0 + α3 Λ

3
0 =

√
(Λ1

0)2 + (Λ2
0)2 + (Λ3

0)2 > 0 ,

9 Since

(R1)−1 (R−1
1 )T =

 (u1 · u1) (u1 · u2) (u1 · u3)
(u2 · u1) (u2 · u2) (u2 · u3)
(u3 · u1) (u3 · u2) (u3 · u3)

 =

 1 0 0
0 1 0
0 0 1

 .
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and
a20 = β1 Λ

1
0 + β2 Λ

2
0 + β3 Λ

3
0

=
√

(Λ1
0)2 + (Λ2

0)2 + (Λ3
0)2 (u1 · u2) = 0 .

Similarly, a30 = 0. Now let

v2 = (a21, a22, a23)

and
v3 = (a31, a32, a33) .

Let v1 = (c1, c2, c3) be such that {v1, v2, v3} is an orthonormal basis for R3.
If necessary, by allowing v1 → −v1 we can arrange for

(R2)−1 =


1 0 0 0
0 c1 a21 a31
0 c2 a22 a32
0 c3 a23 a33


to be an orthogonal matrix in L↑+. Then (R1)−1 Λ (R2)−1 must be in L↑+,
and is of the form, which is easily verified using problem 2.11, that

(R1)−1 Λ (R2)−1 =


a b 0 0
c d 0 0
0 0 1 0
0 0 0 1

 .

Here
a = Λ0

0 , b = Λ0
1c1 + Λ0

2c2 + Λ0
3c3 ,

c = a10 , and d = a11c1 + a12c2 + a13c3 .

As we have already shown in problem 2.12, a proper orthochronous Lorentz
transformation of the form 

a b 0 0
c d 0 0
0 0 1 0
0 0 0 1


is a Lorentz transformation in the x-direction. ut

Theorem 2.12. All the elements of L are generated by T,P and L↑+. Here, T
and P are as in problem 2.6 and 2.7 respectively.

Proof. Let Λ ∈ L. Recall that T−1 = T, and P−1 = P. Then

if Λ ∈ L↓+, then TPΛ ∈ L↑+. Therefore Λ = PTΛ↑+ for some Λ↑+ ∈ L
↑
+.



2.5 Causal Structure of Minkowski Spacetime 33

if Λ ∈ L↓−, then TΛ ∈ L↑+. Therefore Λ = TΛ↑+ for some Λ↑+ ∈ L
↑
+.

if Λ ∈ L↑−, then PΛ ∈ L↑+. Therefore Λ = PΛ↑+ for some Λ↑+ ∈ L
↑
+. ut

In particle physics, there are interactions that do not respect time reversal
symmetry and parity. I.e., the laws of physics in such cases are not invariant
under T and P, and are not considered as inertial transformations.

2.5 Causal Structure of Minkowski Spacetime

Definition 2.8. The collection of Minkowski spacetime points denoted by the
4-tuple (ct, x, y, z), along with the inner product η acting on vectors is called
Minkowski spacetime, and is denoted by M4.

Definition 2.9. The semi-direct product of the Lorentz group and all the
translations forms the Poincaré group. This is the cartesian product (Λ, a),

where Λ ∈ L↑+ and a ∈ M4. Under the action of an element of the Poincaré
group on M4, we get the transformation x̄µ = Λµν x

ν + aµ.

Thus far, all known interactions respect the Poincaré group. I.e., all laws
of physics are invariant under transformations of the type given above. The
elements of the Poincaré transformations are the generators of new inertial
frames.

Now that we have defined our background spacetime M4 and the inner product
η, it is important to clarify that a vector X is located at some particular
x ∈ M4. When this distinction is important, it is indicated by a subscript x.
I.e., a vector at the spacetime point x will be written as Xx.

Definition 2.10. The set of all vector Xx, for any x ∈ M4, clearly forms a
vector space at x and is denoted by Tx(M4) and is referred to as the tangent
space at x.

Definition 2.11. A vector field Y in M4 is a differentiable map such that
Y (x) ∈ Tx(M4) for any x ∈ M4. The differentiability of Y implies that while
Y takes on the form

Y (x) =
(
Y 0(x), Y 1(x), Y 2(x), Y 3(x)

)
,

each component function is differentiable with respect to the spacetime coor-
dinates {xν}. Specifically, this means that
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∂Y µ

∂xν

exists for all values of µ and ν. Typically, we require Y to be smooth. In this
case, all orders of mixed partial derivatives exist. 10

Since the inner product η is not dependent on the location of a spacetime
point in Minkowski coordinates, in what follows we will often indicate a vector
without reference to its location point.

Remark 2.2. However, since the inner product is a map between any two vec-
tors at the same spacetime location, it is to be implicitly understood that, in
what follows, η(A,B) is short for η(Ax, Bx) for some x ∈M4.

Suppose Aµ = ∆xµ is the difference in location between the starting point
and the ending point of a particle moving with a constant speed, then

A2 = −(∆ct)2 + (∆x)2 + (∆y)2 + (∆z)2 < 0

implies
(∆x)2 + (∆y)2 + (∆z)2

(∆t)2
< c2 .

Therefore, the object is traveling below the speed of light, and hence it would
take more time for the object to reach its destination than light would. When
A2 = 0, we have a vector that clearly describes the motion of a particle
travelling at the speed of light. Finally, if A2 > 0, the supposed particle the
vector Aµ is describing travels a greater spatial distance than light would
in the same amount of time. We are not claiming that such particles exists,
however, the above discussion motivates the following definition.

Definition 2.12. Let A be any vector at any point in M4. Then A is called

• timelike if A2 < 0.
• light-like (or null) if A2 = 0.
• spacelike if A2 > 0.

Definition 2.13. Let A,B,X and Y be any set of vectors in M4. Then

• if A2 = −1, we say that A is a unit timelike vector
• if B2 = 1, we say that B is a unit spacelike vector

10 By a mixed partial derivative we mean objects like

∂2Y µ

∂x0∂x1

etc.
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• if X and Y are vectors at any same point x ∈ M4, and if η(X,Y ) = 0,
we say that X and Y are orthogonal.

• if X and Y are unit orthogonal vectors, then they are called orthonormal.

Definition 2.14. A vector in M4 is causal if it is time-like or null.

Problem 2.13. Let T = (T 0, T 1, T 2, T 3) be a timelike vector. Then there
exists a rotation Λ ∈ L such that T̄µ = Λµ ν T ν is of the form T̄µ =
(T̄ 0, T̄ 1, 0, 0) . Hint: Use theorem 2.1.

Problem 2.14. Let T be a timelike vector of the form T = (T 0, T 1, 0, 0) .
Then there exists a Lorentz boost Λ ∈ L such that T̄µ = Λµ ν T

ν is of the
form T̄µ = (T̄ 0, 0, 0, 0) .

Definition 2.15. Let A ∈M4. Then

A⊥ = {B ∈M4| η(A,B) = 0}

is the set of all vectors orthogonal to A.

Problem 2.15. Let A ∈M4. Show that A⊥ is a vector space.

Theorem 2.13. Let T be a timelike vector in M4. Then T⊥ is a 3-dimensional
subspace of M4 consisting of only spacelike vectors.

Proof. Considering the results from the last two problems, let Λ ∈ L be such
that

T̄µ = Λµ νT
ν

is of the form given by
T̄µ = (T̄ 0, 0, 0, 0) .

In this frame set

S̄µ1 = (0, 1, 0, 0), S̄µ2 = (0, 0, 1, 0) , and S̄µ3 = (0, 0, 0, 1) .

Then
T̄⊥ = span {S̄1, S̄2, S̄3} .

Since η is invariant under L, we get that

T⊥ = span {S1, S2, S3} ,

where
Sµi = (Λ−1)µ ν S̄

ν
i

for i = 1, 2, 3 are orthonormal spacelike vectors. ut
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Problem 2.16. Let N = (N0, N1, N2, N3) be a lightlike vector. Then there
exists a rotation Λ ∈ L such that N̄µ = Λµ ν Nν is of the form N̄µ =
(a,± a, 0, 0), where a is a constant. Hint: Use theorem 2.1.

Theorem 2.14. Let N be a lightlike vector in M4. Then N⊥ is a 3-dimensional
subspace of M4 of the type

N⊥ = span {N,S1, S2} ,

where S1 and S2 are spacelike vectors.

Proof. Let Λ ∈ L be such that

N̄µ = Λµ νN
ν

is of the form given by
N̄µ = (a,±a, 0, 0) .

In this frame set

S̄µ1 = (0, 0, 1, 0) , and S̄µ2 = (0, 0, 0, 1) .

Then
N̄⊥ = span {N̄ , S̄1, S̄2} .

Since η is invariant under L, we get that

N⊥ = span {N,S1, S2} ,

where
Sµi = (Λ−1)µ ν S̄

ν
i

for i = 1, 2 are orthonormal spacelike vectors. ut

Note that N⊥ contains N . This is a peculiarity of special relativity stemming
from the fact that η permits non-zero null vectors (since every null vector is
orthogonal to itself). The 3-dimensional hyperplane N⊥ is often referred to
as a null hyperplane. In general relativity, where spacetime is pliable, we will
have null hypersurfaces of interest. In particular, as we shall see, the event
horizon of a black hole is in general a null hypersurface.

Time Orientation

We began our study of relativity by looking at how inertial coordinates are
constructed. An inertial observer, free from any external forces, would use a
light source, and a clock to setup a spacetime coordinate chart {xµ} for all
events of interest. Suppose in this coordinate system, a particle moves from
point xµ1 to xµ2 , then the displacement vector from xµ1 to xµ2 is such that
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∆x0 = x02 − x01 > 0 . (2.14)

Meaning, event xµ2 occurs at a later time than xµ1 . We will refer to such a
vector that denotes particle displacement as a future-pointing timelike vector.
Strictly speaking, while the above choice is convenient, it is not necessary.
This, however, means that we have to keep up with our unnatural choice of
coordinate system and compensate for this fact during every calculation. We
will dispense with such tautology by defining a notion of “future” in precise
terms.

Theorem 2.15. Let T be timelike, and W any causal vector, then either

T 0W 0 > 0 in which case η(T,W ) < 0 ,

or
T 0W 0 < 0 in which case η(T,W ) > 0 .

Proof. If T 0W 0 = 0, then since T is timelike T 0 6= 0, so W 0 = 0 i.e., W is
spacelike and hence is not causal. So either T 0T 0 > 0 or T 0W 0 < 0 .

We have that (T 0)2 >
∑3
i=1(T i)2 and (W 0)2 ≥

∑3
i=1(W i)2. Therefore,

(T 0W 0)2 >

(
3∑
i=1

(T i)2

) 3∑
j=1

(W j)2

 ≥ ( 3∑
i=1

T i W i

)2

,

i.e.,

|T 0W 0| >

∣∣∣∣∣
3∑
i=1

T i W i

∣∣∣∣∣ .
If T 0W 0 > 0, we have that

T 0W 0 = |T 0W 0| >

∣∣∣∣∣
3∑
i=1

T i W i

∣∣∣∣∣ ≥
3∑
i=1

T i W i .

Therefore, g(T,W ) < 0. If T 0W 0 < 0, we have g(T,−W ) < 0 and so
g(T,W ) > 0. ut

Given a causal vector, it may not be clear if you are in an inertial chart
such that for future pointing causal vectors, eq.(2.14) is true.

Definition 2.16. Let T be any fixed timelike vector field in M4. Then (M4, T )
is referred to as a time-oriented Minkowski spacetime.
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Definition 2.17. In (M4, T ) a causal vector W is future pointing if and only
if η(T ,W ) < 0.

Please note that,

a. T should evaluated at the same space-time location as W (see remark
2.2).

b. furthermore, by definition, T is future-pointing in (M4, T ).
c. T fixes the direction of future in (M4, T ).

Definition 2.18. In (M4, T ), a Minkowski coordinate system is positively
time-oriented if T 0 > 0.

Theorem 2.16. Let X be a future-pointing causal vector in a positively time-
oriented Minkowski coordinate system (ct, x, y, z). Then X0 > 0.

Proof. This follows immediately from From definition 2.17 and theorem 2.15.
ut

Theorem 2.17. Let (ct, x, y, z) be a positively time-oriented Minkowski co-

ordinate system for (M4, T ), and let Λ ∈ L↑+. Then (ct̄, x̄, ȳ, z̄) as generated
by Λ in the usual manner is a positively time-oriented Minkowski coordinate
system.

Proof. Considering theorem 2.11, we can pick Λ to be a Lorentz boost in the
x-direction. In this case

T̄ 0 = γ (T 0 − βT 1) .

But,
−(T 0)2 + (T 1)2 + (T 2)2 + (T 3)2 ≤ 0 .

Since T 0 > 0, we get that

T 0 ≥
√

(T 1)2 + (T 2)2 + (T 3)2 ≥ T 1 .

Hence, since β < 1, we get that T̄ 0 > 0. ut

Problem 2.17. Let N be a continuous future-pointing null vector field in
(M4, T ). Then any causal vector W is future pointing if and only if

a. η(W,N) < 0, at any point in spacetime where W is not proportional to
N .
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b. W = a2N , for some non-zero number a, wherever W is proportional to
N .

Remark 2.3. From the above problem, we see that a non-vanishing null vector
field defines a time orientation on M4.

Problem 2.18. Find a spacelike vector S such that S0 > 0. Then find a
Lorentz boost in L↑+ such that S̄0 < 0.

From the above problem, it should be clear that there is no temporal order to
spacelike vectors.

Problem 2.19. If V and W are future-pointing timelike and future-pointing
causal vectors respectively, show that V +W is future-pointing timelike.

Zeeman’s Theorem

Definition 2.19. Let f : M4 →M4 such that

1. f is 1-1 and onto. I.e., f−1 is well defined.

2. (v − w)2 = 0 for v, w ∈M4 ⇐⇒ (f(v)− f(w))2 = 0.

3. v − w is future pointing lightlike ⇐⇒ f(v) − f(w) is future pointing
lightlike.

Then f is called a causal automorphism.

A causal automorphism is the most general candidate for an inertial transfor-
mation: f takes the whole of M4 and maps it uniquely to the whole of M4.
This means that the new inertial observer has complete access to spacetime.
Further, from property 2, f maps lightlike vectors to lightlike vectors, i.e., f
preserves the speed of light. Finally, f preserves the temporal order on light
rays. I.e., it maps future pointing null vectors to future pointing null vectors.
This is a mild and meaningful restriction. We certainly don’t want light beams
to be sent to the past by an inertial observer! However, we are not a priori
restricting f to be a linear transformation.

Definition 2.20. A dilation K : M4 →M4 is the map

K(v) = k v

for every v ∈M4. Here k is a positive constant. It is usual for k to be referred
to as a conformal factor.
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We state the following theorem by Zeeman without proof [2]. The most in-
tuitive proof of Zeeman’s theorem is by S. Nanda and is definitely worth
studying [5].

Theorem 2.18. Let f be a causal automorphism of M4. Then there exists an
orthochronous orthogonal transformation Λ, a ∈M4, and a dilation K of M4

such that f = K ◦ Λ+ a. I.e.,

x̄µ = fµ(x) = k Λµ ν x
ν + aµ ,

for some Λ ∈ L↑+.

Let us see what this very important theorem tells us about special relativity.
First we will tackle the conformal factor k. A transformation of type

(ct, x, y, z)→ k (ct, x, y, z)

has no physical content. It simply changes the length scale by a factor k. A
dilation is similar to converting from metric units to English units for example.
Barring conformal factors, any transformations (that could include non-linear
ones) that preserves the feature that speed of light is constant and the fact that
light flows into the future is necessarily an inertial transformation generated by
the Poincare group, and none other. Our quest for inertial transformations are
in fact over. And, most importantly, since Poincare transformations preserve
the inner product η, it is truly a fundamental property of spacetime and is not
preserved just for lightlike vectors. This inner product must be elevated to the
status of a metric, in a differential geometric sense, when using non-inertial
coordinates, or even non-Cartesian coordinates for that matter. 11 So, our
hasty calculation of the Lorentz transformation has proven to be the correct
one under boosts. There is no other way speed of light can be preserved, along
with causality, without mixing space and time!

11 This will be clarified along the way. For example, when using the familiar spherical
coordinate system on the spatial coordinates (x, y, z), i.e., when we use coordi-
nates (ct, r, θ, ϕ), η should be written as

−c2 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 .

We will learn how and why we do this when we study tensor calculus.
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